近日,快手在短视频评论开始内测「快手AI玩评」,用户可以通过输入各种创意文字,一键生成海量风格图片,可以更轻松、便捷地在评论区进行趣味互动。这是继“AI对话”之后,快手在短视频场景内落地的又一AIGC能力。
据悉。快手“AI玩评”依托于快手自研文生图大模型“可图”(Kolors)强大的图像生成能力实现。可图大模型能够基于开放式文本生成风格多样、画质精美、创意十足的绘画作品,让用户可以轻松高效地完成艺术创作。这也是快手AI团队在大语言模型「快意」之后,再次公布了其在AIGC领域的最新突破和布局。
随着AI技术的不断突破创新,AIGC未来会成为内容创作者“突破边界”的工具,它会让更多“脑中有画面,心中有故事”的人能够进行更轻松、高效的创作。据了解,可图大模型的三大特点保证了出色的图像生成效果:
首先,强大的文本理解能力。快手AI构建了数十亿的图文训练数据,数据来自开源社区、内部构建和自研AI技术合成。这些数据覆盖了常见的三千万中文实体概念,兼具世界知识。在此基础上训练研发了一个强大的中文CLIP模型,不仅懂我们的语言,也更懂中文世界的图像;其次,快手AI利用自研的中文LLM,融合CLIP的图文特征作为文生图的文本理解模块,不但实现了中文特色概念的理解,更解决了复杂概念、属性混淆等文生图领域常见问题。
其次,丰富的细节刻画。快手AI研究团队更改了去噪算法的底层公式和加噪公式;同时精选了一批高细节、高美感的优质数据,在模型学习的后期进行有侧重学习。实现了单一基座模型在主体完整的前提下,可生成具有丰富细节和纹理的图片。同时,基座模型也实现了输入图片,输出细节丰富图片的图生图能力。
第三,多样的风格转化。可图大模型具有基于Prompt的自动学习模型,基于知识的理解与扩充,为用户提供不同的风格模版。依据提示词自动扩充模块,可以丰富化用户描述,包括风格、构图、视觉要素等。配合强大的文生图基座模型,Kolors 可以帮助用户准确理解自己的需求,通过简单描述即可生成多样化风格的图片。
在可图大模型强大的图像生成能力背后,是快手AI团队在多模态内容理解和生成方面的长期积累,和在大模型领域的持续创新性探索。
据了解,从8月下旬开始,快手AI团队已在公司内部开启了可图大模型平台的内测,面向内部业务团队提供丰富全面的AI绘画创作能力,并支持网页版工具和标准化API两种使用方式。
快手AI团队表示,「可图」大模型仍在持续优化效果、丰富能力。未来,可图将会与快手的更多业务开展合作,用AI技术丰富业务的想象力,探索更多有趣、有价值的创新应用落地,让人机共创成为现实。
好文章,需要你的鼓励
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。
这篇论文介绍了LegalSearchLM,一种创新的法律案例检索方法,将检索任务重新定义为法律要素生成。研究团队构建了LEGAR BENCH数据集,涵盖411种犯罪类型和120万案例,并开发了能直接生成关键法律要素的检索模型。实验表明,该模型在准确率上超越传统方法6-20%,且在未见犯罪类型上展现出强大泛化能力。这一突破为法律专业人士提供了更高效、精准的案例检索工具。