科技行者 11月6日 北京消息:汽车半导体供应商恩智浦半导体NXP Semiconductors N.V.(纳斯达克代码:NXPI)推出汽车车规级深度学习工具包eIQ Auto,扩展了公司eIQ机器学习产品系列。该工具包旨在帮助客户从开发环境快速地转向满足汽车行业严格标准的人工智能应用集成。eIQ Auto能够将基于深度学习的算法应用到视觉、自动驾驶、传感器融合、驾驶员监控和其他不断发展的汽车应用。
eIQ Auto工具包使客户能在PC端/云端/GPU环境下对汽车产品进行开发,并将其神经网络集成到S32处理器上。恩智浦的工具包和汽车级推断引擎使神经网络在具有严格安全要求的汽车应用中更容易部署。一个很好的例子是,在基于计算机视觉的系统中,传统计算机视觉算法加速向基于深度学习的算法转变。
深度学习有望在目标检测和分类中提供优于“传统”计算机视觉算法的检测精度和可维护性,但复杂性和高昂的成本阻碍了全车规的集成和实现。
eIQ Auto工具包旨在降低为深度学习算法的每一层选择,并集成嵌入式计算引擎所需的投资成本,从而帮助客户缩短产品上市时间。与其他嵌入式深度学习框架相比,自动选择过程使给定模型的性能提高了30倍。实现此性能的方式是优化可用资源的使用,减少时间和开发工作量——这是基于恩智浦的内部基准,使用单线程Tensor Flow(TF) Lite浮点模型与运行于S32V234双APEX-2上的Auto eIQ量化版本进行比较。这些红利可帮助开发人员对应用进行评估、微调和部署,以获得最大化的总体性能。
符合汽车车规级开发标准和功能安全要求是eIQ Auto和S32V集成的关键优势。eIQ Auto的推断引擎遵照严格的开发要求,符合Automotive SPICE®标准。S32V处理器提供最高级别的功能安全,支持ISO 26262,最高满足ASIL-C、IEC 61508和DO 178标准。
恩智浦副总裁兼高级驾驶员辅助解决方案总经理Kamal Khouri表示:“新一代汽车应用,比如当前自动驾驶测试车辆的集成方案,系统庞大,能耗高且不可能批量生产。新的eIQ工具包可帮助我们的客户在具有最高级别安全性和可靠性的嵌入式处理器环境中部署强大的神经网络。”
恩智浦的Auto eIQ深度学习工具包和车规级S32V芯片共同为新一代汽车应用提供性能、功能安全和质量的强大基础。
恩智浦eIQ Auto工具包包括:
eIQ Auto工具包亮点在于:
好文章,需要你的鼓励
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。
这篇论文介绍了LegalSearchLM,一种创新的法律案例检索方法,将检索任务重新定义为法律要素生成。研究团队构建了LEGAR BENCH数据集,涵盖411种犯罪类型和120万案例,并开发了能直接生成关键法律要素的检索模型。实验表明,该模型在准确率上超越传统方法6-20%,且在未见犯罪类型上展现出强大泛化能力。这一突破为法律专业人士提供了更高效、精准的案例检索工具。