科技行者 11月6日 北京消息:汽车半导体供应商恩智浦半导体NXP Semiconductors N.V.(纳斯达克代码:NXPI)推出汽车车规级深度学习工具包eIQ Auto,扩展了公司eIQ机器学习产品系列。该工具包旨在帮助客户从开发环境快速地转向满足汽车行业严格标准的人工智能应用集成。eIQ Auto能够将基于深度学习的算法应用到视觉、自动驾驶、传感器融合、驾驶员监控和其他不断发展的汽车应用。
eIQ Auto工具包使客户能在PC端/云端/GPU环境下对汽车产品进行开发,并将其神经网络集成到S32处理器上。恩智浦的工具包和汽车级推断引擎使神经网络在具有严格安全要求的汽车应用中更容易部署。一个很好的例子是,在基于计算机视觉的系统中,传统计算机视觉算法加速向基于深度学习的算法转变。
深度学习有望在目标检测和分类中提供优于“传统”计算机视觉算法的检测精度和可维护性,但复杂性和高昂的成本阻碍了全车规的集成和实现。
eIQ Auto工具包旨在降低为深度学习算法的每一层选择,并集成嵌入式计算引擎所需的投资成本,从而帮助客户缩短产品上市时间。与其他嵌入式深度学习框架相比,自动选择过程使给定模型的性能提高了30倍。实现此性能的方式是优化可用资源的使用,减少时间和开发工作量——这是基于恩智浦的内部基准,使用单线程Tensor Flow(TF) Lite浮点模型与运行于S32V234双APEX-2上的Auto eIQ量化版本进行比较。这些红利可帮助开发人员对应用进行评估、微调和部署,以获得最大化的总体性能。
符合汽车车规级开发标准和功能安全要求是eIQ Auto和S32V集成的关键优势。eIQ Auto的推断引擎遵照严格的开发要求,符合Automotive SPICE®标准。S32V处理器提供最高级别的功能安全,支持ISO 26262,最高满足ASIL-C、IEC 61508和DO 178标准。
恩智浦副总裁兼高级驾驶员辅助解决方案总经理Kamal Khouri表示:“新一代汽车应用,比如当前自动驾驶测试车辆的集成方案,系统庞大,能耗高且不可能批量生产。新的eIQ工具包可帮助我们的客户在具有最高级别安全性和可靠性的嵌入式处理器环境中部署强大的神经网络。”
恩智浦的Auto eIQ深度学习工具包和车规级S32V芯片共同为新一代汽车应用提供性能、功能安全和质量的强大基础。
恩智浦eIQ Auto工具包包括:
eIQ Auto工具包亮点在于:
好文章,需要你的鼓励
openGauss的目标是探索oGRAC和超节点深度融合的可能,打造超节点原生数据库。
清华团队开发DKT模型,利用视频扩散AI技术成功解决透明物体深度估计难题。该研究创建了首个透明物体视频数据集TransPhy3D,通过改造预训练视频生成模型,实现了准确的透明物体深度和法向量估计。在机器人抓取实验中,DKT将成功率提升至73%,为智能系统处理复杂视觉场景开辟新路径。
字节跳动研究团队提出了专家-路由器耦合损失方法,解决混合专家模型中路由器无法准确理解专家能力的问题。该方法通过让每个专家对其代表性任务产生最强响应,同时确保代表性任务在对应专家处获得最佳处理,建立了专家与路由器的紧密联系。实验表明该方法显著提升了从30亿到150亿参数模型的性能,训练开销仅增加0.2%-0.8%,为混合专家模型优化提供了高效实用的解决方案。
上海AI实验室团队开发的Yume1.5是一个革命性的AI视频生成系统,能够从单张图片或文字描述创造无限可探索的虚拟世界。用户可通过键盘控制实时探索,系统8秒内完成生成,响应精度达0.836,远超现有技术。该系统采用创新的时空通道建模和自强制蒸馏技术,支持文本控制的事件生成,为虚拟现实和内容创作领域开辟了新的可能性。