在上海举办的2023世界人工智能大会上,AI大模型对医疗、制药行业带来的创新想象,成为一个热点话题,大模型时代后,多模态AI通用化成为医疗领域未来趋势,而医疗与每个人息息相关,AI赋能医疗创新,更是每个人的呼声,在这样的背景下,至顶科技采访了复旦大学复杂体系多尺度研究院院长马剑鹏,马剑鹏提醒,AI赋能了医药创新,但AI不是万能的,不要过分迷信AI。

图:复旦大学复杂体系多尺度研究院院长 马剑鹏
至顶科技:复杂体系多尺度研究究竟是什么样的研究,AI为这一研究起到了什么样的作用?
马剑鹏:我们是做生物计算的研究,复杂体系多尺度研究院致力于发展全新而有效的、贯通微观分子结构直至宏观医学成像的多尺度影像分析技术,为解析生命奥秘提供前所未有的,囊括分子、细胞、组织、器官乃至整个生物体的时空影像数据。面向国际前沿,研究院利用用人工智能、大数据方法结合传统实验手段展开分子生物学、化学、物理学等交叉领域的研究。
我们是做分子层面的研究,AI赋能医药的创新,不管是宏观的医学问题,还是微观的制药问题,都在发挥作用。比如说,制药,AI可以帮助加快医药研发的速度和安全性,这是毋庸置疑的。无论是实验,还是计算,AI都在起赋能作用,比如今天的医学创新,在宏观层面上AI在赋能。说到药物又是一个微观问题,不管是大分子,还是小分子,抑或是中药,也有有效成分问题,在制药这样的微观层面,AI也在赋能。
在今天AI发展的这个拐点时刻,技术的长处和短处都要被看到、被看请。
至顶科技:AI的哪些负面影响需要让我们引起注意?
马剑鹏:AI大模型训练是平均的,在某些应用场景,可以做的比大多数人好,可能在头脑风暴的时候,会需要这样的训练结果,但在大部分场景里,是需要精准答案的。如果正儿八经的胡说八道,在人命关天的时候,还是不是可信,这就是一个很严肃的问题。
针对某个问题时候,在人群里是大平均,但针对某个人的健康问题,又是个性化的。每个人都不一样,每个人又要随着时间变化来看。可能今天你的指标是正常的,但是随着时间的推移,也会发生变化。
更重要的是,以人的个体为单位来看,每个人天生禀赋不同,会有很大差距。有的人经常会喝酒吃肉,这不是一个好的生活习惯,他可能很长寿,有的人过得谨小慎微,却不能长寿。有些人血压高的两百,他工作、生活都很正常,有些人血压一百五,可能就浑身不自在。这些都决定了,每个人都是不一样的个体,是纵向的个体,而大模型是横向思维,每个人是大模型中的平均数。
在医学领域,特别是在今天精准医疗的背景之下,大家去医院,检查完,要么是生病,要么就是健健康康的,但其实在健康和生病之间,还存在一个亚健康的状态。有些提示的指标,显示亚健康问题,会在大模型的人群里被打了平均分,但有些问题是针对一个个个性化的。
类似这样的问题,就是纵向问题,这些纵向问题问题,就需要个性化的解决,就是AI所不能的。
至顶科技:大模型对科研的最大帮助在哪里?
马剑鹏:作为一个AI的用户,用AI来获取知识的速度很快,学一个专业,可以很快掌握。如果把通用模型训练成一个科研助理,那会对科研有很大帮助;抑或是训练成一个竞争对手,寻求去打败这个对手,AI可以发挥很好的作用。
不只是在西医、制药的层面,在中医的范畴里,中医的望、闻、问、切的逐渐智能化也是可及的。
好文章,需要你的鼓励
这项由Snowflake AI Research发表的研究挑战了传统语言学对大型语言模型的批评,通过引入波兰语言学家Mańczak的理论框架,论证了LLM的成功实际上验证了"频率驱动语言"的观点。研究认为语言本质上是文本总和而非抽象系统,频率是其核心驱动力,为重新理解AI语言能力提供了新视角。
freephdlabor是耶鲁大学团队开发的开源多智能体科研自动化框架,通过创建专业化AI研究团队替代传统单一AI助手的固化工作模式。该框架实现了动态工作流程调整、无损信息传递的工作空间机制,以及人机协作的质量控制系统,能够自主完成从研究构思到论文发表的全流程科研工作,为科研民主化和效率提升提供了革命性解决方案。
德国马普智能系统研究所团队开发出专家混合模型的"即时重新布线"技术,让AI能在使用过程中动态调整专家选择策略。这种方法无需外部数据,仅通过自我分析就能优化性能,在代码生成等任务上提升显著。该技术具有即插即用特性,计算效率高,适应性强,为AI的自我进化能力提供了新思路。
Algoverse AI研究团队提出ERGO系统,通过监测AI对话时的熵值变化来检测模型困惑程度,当不确定性突然升高时自动重置对话内容。该方法在五种主流AI模型的测试中平均性能提升56.6%,显著改善了多轮对话中AI容易"迷路"的问题,为构建更可靠的AI助手提供了新思路。