一位货车司机,因为北斗掉线而选择自杀结束生命,这是「货拉拉用户跳车事件」之后,货车行业的第二起科技事故。
「货拉拉事件」后续,是货拉拉上线了一系列安全整改措施。从公开资料来看,包括行程录音、行驶记录仪、逾期预警等。
但很遗憾,货拉拉的整改措施,其实对司机和乘客的保护作用并不会太大——为什么这么说呢,因为这是由目前城市的暴力犯罪类型所决定的。
由于技术在城市管理中已无处不在,比如大街小巷都能看到摄像头。绝大多数人都能认识到:在公共环境的暴力犯罪,跑不掉,藏不住。
近些年,一些陈年旧案接连告破,就是信息技术和生物技术升级的结果。
所以目前城市中的暴力犯罪,往往以“激情犯罪”(即冲动性、爆发性犯罪行为)为主。
回看「货拉拉事件」,司机和客户之间的怒火,来自于女孩用满了平台所规定的免费等待时间,又拒绝了司机的协助付费搬运。
而货拉拉的整改措施(包括行程录音、行驶记录仪、逾期预警等),没有一个能缓解司机的不满,没有一个能化解跳车乘客的惶恐(虽然此次事件可能是过度惶恐),都无法阻挡“激情犯罪”的发生,仅仅能协助处理犯罪之后的追查与定责罢了。
说白了,货拉拉的系统整改主要强调「事故后的法律追责」,却没有对「缓解司机和客户之间的情绪冲突」做任何改进。
而这种情绪冲突,却又是货拉拉系统造成的。这就像给屋顶凿了一个洞,然后底下放一个盆接水,却不想着去补屋顶。
这种错误价值观的背后,是技术系统对“人情”的视而不见。正如「北斗货车事件」,也是技术系统与人情之间的冲突。
货车建立北斗系统的初衷是让行车更安全,这个初衷没错。
问题在于系统的规则。系统规定,无信号就要罚款,这是因为考虑到人为主动拆除系统而躲避监管的可能性。系统在此预判了人情的恶。
可是,系统却忽视了另外一种可能性,就是技术可能出故障,会对人的行为产生误解。
如果系统无法具体理解每一个人的“人情”,只是默认一切的失常行为,都是人情之“恶”。换言之,系统对人只做“有罪”推定是不完善的,因为一些被系统规则误判的人,无法去与冰冷的系统规则讨说法。这些被误判的人,应该怎么办呢?
被系统制裁的人,只能寄希望于开发系统的人(既是裁判员,又是运动员)推翻自己的机器裁决。
绝望自然在所难免。
从统计学角度看,在绝大多数情况下,机器系统或许比人更公正。但是偏偏有一小部分情况,系统会做出不公正的裁决。
这时,谁应该做最终的裁判?
好文章,需要你的鼓励
北航团队推出Easy Dataset框架,通过直观的图形界面和角色驱动的生成方法,让普通用户能够轻松将各种格式文档转换为高质量的AI训练数据。该工具集成了智能文档解析、混合分块策略和个性化问答生成功能,在金融领域实验中显著提升了AI模型的专业表现,同时保持通用能力。项目已开源并获得超过9000颗GitHub星标。
卢森堡计算机事件响应中心开发的VLAI系统,基于RoBERTa模型,能够通过阅读漏洞描述自动判断危险等级。该系统在60万个真实漏洞数据上训练,准确率达82.8%,已集成到实际安全服务中。研究采用开源方式,为网络安全专家提供快速漏洞风险评估工具,有效解决了官方评分发布前的安全决策难题。
中国电信研究院等机构联合开发的xVerify系统,专门解决复杂AI推理模型的评估难题。该系统能够准确判断包含多步推理过程的AI输出,在准确率和效率方面均超越现有方法,为AI评估领域提供了重要突破。
昆仑公司Skywork AI团队开发的Skywork R1V模型,成功将文本推理能力扩展到视觉领域。该模型仅用380亿参数就实现了与大型闭源模型相媲美的多模态推理性能,在MMMU测试中达到69.0分,在MathVista获得67.5分,同时保持了优秀的文本推理能力。研究团队采用高效的多模态迁移、混合优化框架和自适应推理链蒸馏三项核心技术,成功实现了视觉理解与逻辑推理的完美结合,并将所有代码和权重完全开源。