2022 年,数字孪生市场规模为 69 亿美元,预计到 2027 年将达到 735 亿美元。此外,Gartner在2022年2月发布的《新兴技术: 数字孪生的收入机会预测》研究报告指出,到 2025 年, 25 家全球企业将通过其数字孪生计划实现10 亿美元的收入或成本节约,而2021年只有一家。虽然数字孪生的价值显而易见,但创建它们所需的努力程度可能令人生畏。一个有效的数字孪生是由来自众多来源和多种格式的大量不同数据创建的,其中包含 3D 模型、会计系统和运营系统等元素,以及来自物联网设备的数据。
各行各业都在使用 Neo4j 知识图谱来构建数字孪生
知识图谱擅长协调复杂数据和将大量现实世界中的结构及其业务逻辑灵活地建模。以Neo4j的图数据库为基础,企业可以在任何行业的任何结构或流程中展示数字孪生,从而产生各种各样的用例。 Neo4j的图数据平台提供了根据企业规模经济地构建、管理和查询数字孪生模型所需的灵活性、性能和分析能力,统一了无数来源的数据以提供最大的商业价值。图为数字孪生带来了最先进的分析,并支持强大的查询,以及从算法到嵌入的数据科学和机器学习技术。
Neo4j 产品市场高级总监 Maya Natarajan 强调了数字孪生技术解锁并为众多行业带来的价值,她表示:“虽然数字孪生技术才刚刚出现,但它正在企业战略中迅速流行起来,让我们有能力了解现在并预测未来。今天,我们可以使用数字孪生为业务的所有部分创建数字化模型进行模拟,从供应链到人力资源系统、汽车制造等等。借助图技术充分发挥数字孪生的潜力,企业可以获取全新、智能和灵活的能力,并最终获得最大的商业价值。”
Neo4j 数字孪生客户成功案例
客户使用 Neo4j 图技术来帮助构建跨各个行业和用例的尖端数字孪生。用于供应链管理的数字孪生提供对复杂网络的可视性,在汽车行业中连接各种各样的产品验证生命周期数据,在生命科学制造中映射复杂的生产线。
已将Neo4j图技术作为其数字孪生计划一部分进行实施的企业在敏捷性方面处于有利地位。以下是他们如何使用Neo4j 推进关键计划的一些示例:
北美铁路货运领先供应商CSX Transportation的企业架构师和IT服务主管Dave Rich提到,他们选择Neo4j帮助构建其物理网络的数字孪生模型。他表示:“我们很快意识到我们需要解决的问题是建立在关联的基础上,需要对机车、轨道车、客户、运输订单、里程标等资产之间的复杂关系有更深入的了解。借助 Neo4j,我们已经能够有效地跟踪、报告和可视化数十万资产和随着时间推移的相互关系,以及它们是如何发生的。数字孪生还让客户能够了解他们的订单在哪里以及何时到达,也改善了这方面的业务。”
城市数据编织平台Turku City Data 利用“智慧城市知识图谱”来支持其数字孪生,从而解决关键城市优先事项,例如减少能源使用和寻找提高交付速度和运输资源的路线。
Neanex提供基于Neo4j的数字孪生服务,使资产所有者能够创建连接从3D模型到构建许可的所有类型数据的数字孪生。
一家全球财富100强大型制药公司通过实施基于Neo4j的数字孪生,支持广泛的供应链用例,包括决策模拟、成本和时间等参数优化、风险评估和缓解,以及生产线设计备选方案。
通过结合图技术和数字孪生的力量,企业获得了独特的竞争优势。随着世界数字化格局的扩大,这些虚拟等价物在设计以前无法想象的最佳解决方案方面将变得越来越重要。
关于 Neo4j
Neo4j是全球图数据平台的领导者。我们帮助包括康卡斯特(Comcast)、美国宇航局(NASA)、瑞银(UBS)和沃尔沃汽车(Volvo Cars)等客户,捕捉数据中隐藏的现实世界丰富的上下文情境,以应对任何规模的挑战。我们的客户通过遏制金融欺诈和网络犯罪、优化全球网络、加速突破性研究和提供更好的建议来改变其所在的行业。Neo4j提供实时交易处理、先进的AI/ML、直观的数据可视化等支持。
好文章,需要你的鼓励
这项由Midjourney团队主导的研究解决了AI创意写作中的关键问题:如何让AI既能写出高质量内容,又能保持创作的多样性和趣味性。通过引入"偏差度"概念和开发DDPO、DORPO两种新训练方法,他们成功让AI学会从那些被传统方法忽视的优秀独特样本中汲取创意灵感,最终训练出的模型在保持顶级质量的同时,创作多样性接近人类水平,为AI创意写作开辟了新方向。
上海AI实验室联合多所高校开发出VisualPRM系统,这是首个专门用于多模态推理的过程奖励模型。该系统能像老师批改作业一样逐步检查AI的推理过程,显著提升了AI在视觉推理任务上的表现。研究团队构建了包含40万样本的训练数据集和专门的评估基准,实现了在七个推理基准上的全面性能提升,即使是最先进的大型模型也获得了5.9个百分点的改进。
上海AI实验室团队通过LEGO积木设计了创新评测基准LEGO-Puzzles,系统测试了20个先进多模态大语言模型的空间推理能力。研究发现即使最强AI模型准确率仅57.7%,远低于人类93.6%的表现,揭示了当前AI在三维空间理解和多步序列推理方面的重大不足,为机器人、自动驾驶等应用发展提供重要参考。
字节跳动团队突破了AI图像生成领域的三大难题:身份识别不准确、文字理解偏差和图片质量不佳。他们开发的InfiniteYou技术采用创新的InfuseNet架构和多阶段训练策略,能够根据用户照片和文字描述生成高质量个性化图像。实验显示该技术在身份相似度、文本匹配度和图像质量方面均超越现有最佳方案,并具备出色的兼容性,为个性化内容创作开辟了新道路。